SO-CHIC ERDDAP
Easier access to scientific data
   
Brought to you by SO-CHIC    

ERDDAP > griddap > Data Access Form ?

Dataset Title:  SOOS - Tracking of marine predators to protect Southern Ocean ecosystems Subscribe RSS
Institution:  Australian Antarctic Division   (Dataset ID: SCAR_RAATD)
Information:  Summary ? | License ? | FGDC | ISO 19115 | Metadata | Background (external link) | Files | Make a graph
 
Dimensions ? Start ? Stride ? Stop ?  Size ?    Spacing ?
 latitude (degrees_north) ?      400    -0.1 (even)
  < slider >
 longitude (degrees_east) ?      3600    0.1 (even)
  < slider >
 
Grid Variables (which always also download all of the dimension variables) 
 ADPE ?
 ANFS ?
 ANPE ?
 BBAL ?
 CRAS ?
 DMSA ?
 EMPE ?
 GHAL ?
 HUWH ?
 KIPE ?
 LMSA ?
 mean_habitat_importance ?
 MEAN ?
 SOES ?
 WAAL ?
 WESE ?
 WHCP ?

File type: (more information)

(Documentation / Bypass this form) ?
 
(Please be patient. It may take a while to get the data.)


 

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
  latitude {
    String _CoordinateAxisType "Lat";
    Float32 actual_range -79.95, -40.05;
    String axis "Y";
    String ioos_category "Location";
    String long_name "Latitude";
    String standard_name "latitude";
    String units "degrees_north";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float32 actual_range -179.95, 179.95;
    String axis "X";
    String ioos_category "Location";
    String long_name "Longitude";
    String standard_name "longitude";
    String units "degrees_east";
  }
  ADPE {
    Float32 _FillValue -3.4e+38;
    String long_name "ADPE";
  }
  ANFS {
    Float32 _FillValue -3.4e+38;
    String long_name "ANFS";
  }
  ANPE {
    Float32 _FillValue -3.4e+38;
    String long_name "ANPE";
  }
  BBAL {
    Float32 _FillValue -3.4e+38;
    String long_name "BBAL";
  }
  CRAS {
    Float32 _FillValue -3.4e+38;
    String long_name "CRAS";
  }
  DMSA {
    Float32 _FillValue -3.4e+38;
    String long_name "DMSA";
  }
  EMPE {
    Float32 _FillValue -3.4e+38;
    String long_name "EMPE";
  }
  GHAL {
    Float32 _FillValue -3.4e+38;
    String long_name "GHAL";
  }
  HUWH {
    Float32 _FillValue -3.4e+38;
    String long_name "HUWH";
  }
  KIPE {
    Float32 _FillValue -3.4e+38;
    String long_name "KIPE";
  }
  LMSA {
    Float32 _FillValue -3.4e+38;
    String long_name "LMSA";
  }
  mean_habitat_importance {
    Float32 _FillValue -3.4e+38;
    String long_name "mean_habitat_importance";
  }
  MEAN {
    Float32 _FillValue -3.4e+38;
    String long_name "MEAN";
  }
  SOES {
    Float32 _FillValue -3.4e+38;
    String long_name "SOES";
  }
  WAAL {
    Float32 _FillValue -3.4e+38;
    String long_name "WAAL";
  }
  WESE {
    Float32 _FillValue -3.4e+38;
    String long_name "WESE";
  }
  WHCP {
    Float32 _FillValue -3.4e+38;
    String long_name "WHCP";
  }
  NC_GLOBAL {
    String _NCProperties "version=2,netcdf=4.8.1,hdf5=1.10.8";
    String author "Hindell MA, Reisinger RR, Ropert-Coudert Y, et al";
    String cdm_data_type "Grid";
    String Conventions "CF-1.6, COARDS, ACDD-1.3";
    String creation_date "2020-03-18";
    String dataset_DOI "doi:10.1038/s41586-020-2126-y";
    Float64 Easternmost_Easting 179.95;
    Float64 geospatial_lat_max -40.05;
    Float64 geospatial_lat_min -79.95;
    Float64 geospatial_lat_resolution 0.10000000000000002;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max 179.95;
    Float64 geospatial_lon_min -179.95;
    Float64 geospatial_lon_resolution 0.09999999999999999;
    String geospatial_lon_units "degrees_east";
    String history 
"2024-12-22T21:28:29Z (local files)
2024-12-22T21:28:29Z https://erddap.sochic-h2020.eu/erddap/griddap/SCAR_RAATD.das";
    String infoUrl "https://data.aad.gov.au/metadata/records/SCAR_RAATD";
    String institution "Australian Antarctic Division";
    String keywords "AREAS OF ECOLOGICAL SIGNIFICANCE, BIOTELEMETRY, HABITAT USE, TRACKING";
    String license 
"The data may be used and redistributed for free but is not intended
for legal use, since it may contain inaccuracies. Neither the data
Contributor, ERD, NOAA, nor the United States Government, nor any
of their employees or contractors, makes any warranty, express or
implied, including warranties of merchantability and fitness for a
particular purpose, or assumes any legal liability for the accuracy,
completeness, or usefulness, of this information.";
    Float64 Northernmost_Northing -40.05;
    String proj4 "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing -79.95;
    String standard_name_vocabulary "CF Standard Name Table v55";
    String summary "We assembled tracking data from seabirds (n = 12 species) and marine mammals (n = 5 species), collected between 1991 and 2016, from across the Antarctic predator research community. See https://data.aad.gov.au/metadata/records/SCAR_EGBAMM_RAATD_2018_Standardised and https://data.aad.gov.au/metadata/records/SCAR_EGBAMM_RAATD_2018_Filtered for the tracking data. Habitat selectivity modelling was applied to these tracking data in order to identify the environmental characteristics important to each species, and to produce circum-Antarctic predictions of important geographic space for each individual species. The individual species maps were then combined to identify regions important to our full suite of species. This approach enabled us to account for incomplete tracking coverage (i.e., colonies from which no animals have been tracked) and to produce an integrated and spatially explicit assessment of areas of ecological importance across the Southern Ocean. The data attached to this metadata record include the single-species maps for Adelie, emperor, king, macaroni, and royal penguins; Antarctic and white-chinned petrels; black-browed, grey-headed, light-mantled, sooty, and wandering albatross; humpback whales; Antarctic fur seal, southern elephant seals, and crabeater and Weddell seals. The data also include the integrated maps that incorporate all species (weighted by colony size, and unweighted). See the paper and its supplementary information for full details on the modelling process and discussion of the model outputs.";
    String title "SOOS - Tracking of marine predators to protect Southern Ocean ecosystems";
    Float64 Westernmost_Easting -179.95;
  }
}

 

Using griddap to Request Data and Graphs from Gridded Datasets

griddap lets you request a data subset, graph, or map from a gridded dataset (for example, sea surface temperature data from a satellite), via a specially formed URL. griddap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its projection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

griddap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/griddap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/griddap/jplMURSST41.htmlTable?analysed_sst[(2002-06-01T09:00:00Z)][(-89.99):1000:(89.99)][(-179.99):1000:(180.0)]
Thus, the query is often a data variable name (e.g., analysed_sst), followed by [(start):stride:(stop)] (or a shorter variation of that) for each of the variable's dimensions (for example, [time][latitude][longitude]).

For details, see the griddap Documentation.


 
ERDDAP, Version 2.24
Disclaimers | Privacy Policy | Contact