ERDDAP
Easier access to scientific data |
Brought to you by SO-CHIC |
Dataset Title: | EMODnet Physics - Deseasonalized Sea Level monthly means Global Oceans |
Institution: | CMCC - EMODnet Physics (Dataset ID: EMODNET_SEA_LEVEL_MONTHLY_MEAN_DESEASONALIZED) |
Information: | Summary | License | FGDC | ISO 19115 | Metadata | Background | Files | Make a graph |
Attributes { time { String _CoordinateAxisType "Time"; Float64 actual_range 7.271424e+8, 1.6080768e+9; String axis "T"; String bounds "time_bnds"; String calendar "gregorian"; String ioos_category "Time"; String long_name "Time"; String standard_name "time"; String time_origin "01-JAN-1970 00:00:00"; String units "seconds since 1970-01-01T00:00:00Z"; } latitude { String _CoordinateAxisType "Lat"; Float32 actual_range -89.875, 89.875; String axis "Y"; String ioos_category "Location"; String long_name "Latitude"; String standard_name "latitude"; String units "degrees_north"; } longitude { String _CoordinateAxisType "Lon"; Float32 actual_range -179.875, 179.875; String axis "X"; String ioos_category "Location"; String long_name "Longitude"; String standard_name "longitude"; String units "degrees_east"; } sla { Float64 _FillValue -214748.3647; String ancillary_variables "err_sla"; String cell_methods "time: mean"; String comment "The sea level anomaly is the sea surface height above mean sea surface; it is referenced to the [1993, 2012] period; see the product user manual for details"; String grid_mapping "crs"; String long_name "Sea level anomaly"; Float64 missing_value -214748.3647; String standard_name "sea_surface_height_above_sea_level"; String units "m"; } NC_GLOBAL { String _NCProperties "version=2,netcdf=4.7.4,hdf5=1.12.0,"; String cdm_data_type "Grid"; String Conventions "COARDS, CF-1.6, ACDD-1.3"; Float64 Easternmost_Easting 179.875; Float64 geospatial_lat_max 89.875; Float64 geospatial_lat_min -89.875; Float64 geospatial_lat_resolution 0.25; String geospatial_lat_units "degrees_north"; Float64 geospatial_lon_max 179.875; Float64 geospatial_lon_min -179.875; Float64 geospatial_lon_resolution 0.25; String geospatial_lon_units "degrees_east"; String history "2025-01-22T14:05:01Z (local files) 2025-01-22T14:05:01Z https://erddap.sochic-h2020.eu/erddap/griddap/EMODNET_SEA_LEVEL_MONTHLY_MEAN_DESEASONALIZED.das"; String infoUrl "http://climate.copernicus.eu"; String institution "CMCC - EMODnet Physics"; String keywords "above, anomaly, data, earth, Earth Science > Oceans > Sea Surface Topography > Sea Surface Height, emodnet, height, latitude, level, local, longitude, ocean, oceans, science, sea, sea_surface_height_above_sea_level, sla, source, surface, time, topography"; String keywords_vocabulary "GCMD Science Keywords"; String license "Creative Commons Attribution Share-Alike http://www.opendefinition.org/licenses/cc-by-sa"; String NCO "netCDF Operators version 4.9.2 (Homepage = http://nco.sf.net, Code = https://github.com/nco/nco)"; Float64 Northernmost_Northing 89.875; String sourceUrl "(local files)"; Float64 Southernmost_Northing -89.875; String standard_name_vocabulary "CF Standard Name Table v55"; String summary "EMODnet Physics - Deseasonalized Sea Level monthly means Global Oceans. This product is based, uses and reprocess the CMEMS product id. SEALEVEL_GLO_PHY_CLIMATE_L4_REP_OBSERVATIONS_008_057."; String time_coverage_end "2020-12-16T00:00:00Z"; String time_coverage_start "1993-01-16T00:00:00Z"; String title "EMODnet Physics - Deseasonalized Sea Level monthly means Global Oceans"; Float64 Westernmost_Easting -179.875; } }
The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.
griddap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/griddap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/griddap/jplMURSST41.htmlTable?analysed_sst[(2002-06-01T09:00:00Z)][(-89.99):1000:(89.99)][(-179.99):1000:(180.0)]
Thus, the query is often a data variable name (e.g., analysed_sst),
followed by [(start):stride:(stop)]
(or a shorter variation of that) for each of the variable's dimensions
(for example, [time][latitude][longitude]).
For details, see the griddap Documentation.